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Abstract. A theory is presented for the frequency dependence of the power spectrum of photon current
fluctuations originating from a disordered medium. Both the cases of an absorbing medium (“grey body”)
and of an amplifying medium (“random laser”) are considered in a waveguide geometry. The semiclassical
approach (based on a Boltzmann-Langevin equation) is shown to be in complete agreement with a fully
quantum mechanical theory, provided that the effects of wave localization can be neglected. The width of
the peak in the power spectrum around zero frequency is much smaller than the inverse coherence time,
characteristic for black-body radiation. Simple expressions for the shape of this peak are obtained, in the
absorbing case, for waveguide lengths large compared to the absorption length, and, in the amplifying case,
close to the laser threshold.

PACS. 42.50.Ar Photon statistics and coherence theory – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion – 42.68.Ay Propagation, transmission, attenuation,
and radiative transfer

1 Introduction

The noise power spectrum of a black body is frequency
independent for frequencies below the absorption band
width. The inverse of the band width is the coherence
time τcoh of the radiation [1], which for a black body is
the longest relevant time scale — hence the white noise
spectrum P (Ω) for Ω . 1/τcoh. In a weakly absorb-
ing, strongly scattering medium there appear two longer
time scales: the absorption time τa and the time L2/D it
takes to diffuse (with diffusion constant D) through the
medium (of length L). As a consequence, P (Ω) for such
a weakly-absorbing medium (sometimes called a “grey
body”) starts to decay at much lower frequencies than
for a black body having the same coherence time.

Although there is by now a substantial literature on
the theory of grey-body radiation [2–7], the results have
been limited to either the zero or high-frequency limits of
the noise spectrum (or, equivalently, to short or long pho-
todetection times). In the present work we remove this
limitation, by computing P (Ω) for a diffusive medium for
arbitrary ratios of Ω, 1/τa, and D/L2. We compare two
different approaches in a waveguide geometry: one which is
fully quantum mechanical (based on random-matrix the-
ory [7,8]) and another which is semiclassical (based on
a Boltzmann-Langevin equation [9]). Each method has
its advantages and disadvantages: the quantum theory

a e-mail: mishch@lorentz.leidenuniv.nl

includes interference effects, which are ignored in the semi-
classical theory, but it is mathematically more involved.
Complete agreement between the two approaches is ob-
tained in the limit that the waveguide length L is much
smaller than the localization length (equal to the mean
free path times the number of propagating modes).

The results for absorbing media can be applied di-
rectly to linear amplifiers, by formally changing the sign
of the temperature and the absorption time. Loudon and
coworkers [10,11] used this relationship to calculate the
noise power spectrum of a waveguide without disorder.
The generalization to a diffusive medium presented here
describes a random laser [12] below threshold.

The outline of this paper is as follows. We start with
the semiclassical approach, presenting a general solution
of the Boltzmann-Langevin equation in Section 2 and
applying it to a waveguide geometry in Section 3. The
quantum mechanical approach is developed in Section 4.
For the quantum theory we need the correlator of reflec-
tion and transmission matrices at different frequencies.
These are calculated in the Appendix, using the random-
matrix method of reference [13]. We discuss our findings
in Section 5.

2 Semiclassical theory

Starting point of the semiclassical theory is the
Boltzmann-Langevin equation for photons of reference [9].
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Fig. 1. Thermal radiation (solid arrow) is incident through
port S0 on an absorbing disordered medium (shaded). The
outgoing radiation (dashed arrows) is absorbed by photode-
tectors.

We first consider an absorbing medium (in equilibrium at
temperature T ), leaving the amplifying case for the end of
this section. We make the diffusion approximation, valid
if the mean free path l is the shortest length scale in the
system (but still large compared to the wavelength). The
fluctuating number density n(ω, r, t) and current density
j(ω, r, t) of photons at frequency ω, position r, and time t
are related by [9]

j = −D∂n
∂r

+L1, (2.1)

∂n

∂t
+

∂

∂r
· j = Dξ−2

a (ρf − n) + L0. (2.2)

Here D = cl/3 is the diffusion constant, ξa =
√
Dτa

is the absorption length (with τa the absorption time),
ρ = 4πω2(2πc)−3 is the density of states (not counting
polarizations), and f = [exp (~ω/kT )− 1]−1 is the Bose-
Einstein function. We assume ξa � l. The fluctuating
source terms L0 and L1 have zero mean and correlators

L0(ω, r, t)L0(ω′, r′, t′) = δ(ω − ω′)δ(t− t′)δ(r− r′)

×Dξ−2
a (2fn̄+ ρf + n̄),

(2.3a)

L1α(ω, r, t)L1β(ω′, r′, t′) = 2δαβδ(ω − ω′)δ(t− t′)δ(r− r′)
×Dn̄(1 + n̄/ρ). (2.3b)

The cross-correlator of L0 and L1 is given in reference [9],
but will not be needed. Combining equations (2.1, 2.2) we
find equations for the mean n̄ and the fluctuations δn of
the photon number density n = n̄+ δn,

− 1
D

∂n̄

∂t
+
∂2n̄

∂r2
− n̄

ξ2
a

= −ρf
ξ2
a

, (2.4)

− 1
D

∂δn

∂t
+
∂2δn

∂r2
− δn

ξ2
a

=
1
D

∂

∂r
·L1 −

L0

D
· (2.5)

We present a general solution for the multiport geome-
try of Figure 1. Thermal radiation is incident through the
port S0 and can leave the system via ports S0, S1, S2, . . . ,
where it is absorbed by photodetectors. The corresponding
boundary conditions are n(ω, r, t)|r∈Sp = nin(ω, t)δp0. We

assume that the closed boundaries Σ of the system (with
volume V ) are perfectly reflecting. The separation of the
ports is of order L� l. In what follows we assume detec-
tion of outgoing radiation in a narrow frequency interval
δω around ω. We require that δω is small both compared
to ω and to 1/τcoh. To minimize the notations in this sec-
tion we omit the frequency argument ω and use units in
which δω ≡ 1. (We will reinsert δω in the next section.)

The Green function of the differential equa-
tions (2.4, 2.5) in the Fourier representation with
respect to the time argument satisfies(

∂2

∂r2
− ξ−2

a +
iΩ
D

)
G(r, r′, Ω) = δ(r− r′). (2.6)

(Fourier transforms are defined as f(Ω) =∫∞
−∞ dt eiΩtf(t).) For frequency resolved detection

we require Ω � δω. We impose the boundary conditions

G(r, r′, Ω)|r∈Sp = 0, p = 0, 1, 2, ..., (2.7a)

Σ · ∂G(r, r′, Ω)
∂r

|r∈Σ = 0, (2.7b)

where Σ denotes the outward normal direction to the sur-
face Σ. We consider separately the mean and the fluctua-
tions of the photon number and current densities.

2.1 Mean solution

The average photon density satisfying equation (2.4) can
be expressed in Fourier representation in terms of the
Green function (2.6),

n̄(r, Ω) = −2πρfξ−2
a δ(Ω)

∫
V

dr′ G(r, r′, 0)

+ n̄in(Ω)
∫
S0

dS′ · ∂G(r, r′, Ω)
∂r′

· (2.8)

Substituting this formula into the expression for the cur-
rent (2.1) and integrating over the area Sp one obtains the
mean outgoing current Īp through port p 6= 0,

Īp(Ω) = 2πρDfξ−2
a δ(Ω)

∫
Sp

dS ·
∫
V

dr′
∂G(r, r′, 0)

∂r

−Dn̄in(Ω)
∫
Sp

dSα
∫
S0

dS′β
∂2G(r, r′, Ω)
∂rα∂r′β

· (2.9)

(Summation over the repeating Greek indices is implied.)
The first term ∝ δ(Ω) is the time-independent mean ther-
mal radiation from the medium. The second term is that
part of the mean radiation entering through port 0 that
leaves the medium through one of the other ports. (The
restriction to p 6= 0 is not essential but simplifies the gen-
eral formulas considerably, so we will make this restriction
in what follows.)
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Cαβ(r, Ω; r′, Ω′) =
D

ξ2
a

Z
V

dr′′
∂G(r, r′′, Ω)

∂rα

∂G(r′, r′′, Ω′)

∂r′β
[(2f + 1)n̄(r′′, Ω +Ω′) + ρf ]

+ 2D

Z
V

dr′′Gαγ(r, r′′, Ω)Gβγ(r′, r′′, Ω′)

�
n̄(r′′, Ω +Ω′) +

1

ρ

Z
dΩ′′

2π
n̄(r′′, Ω +Ω′′)n̄(r′′, Ω′ −Ω′′)

�
. (2.14)

2.2 Fluctuations

The fluctuations in the number density follow in a similar
way from the Green function and equation (2.5),

δn(r, Ω) =
1
D

∫
V

dr′ G(r, r′, Ω)
(
∂

∂r′
·L1(r′, Ω)−L0(r′, Ω)

)

+ δnin(Ω)
∫
S0

dS′ · ∂G(r, r′, Ω)
∂r′

· (2.10)

The fluctuation of the current density is then given by
equation (2.1),

δjα(r, Ω) =∫
V

dr′
(
Gαβ(r, r′, Ω)L1β(r′, Ω) +

∂G(r, r′, Ω)
∂rα

L0(r′, Ω)
)

−Dδnin(Ω)
∫
S0

dS′β Gαβ(r, r′, Ω). (2.11)

We have defined

Gαβ(r, r′, Ω) =
∂2G(r, r′, Ω)
∂rα∂r′β

+ δαβδ(r− r′). (2.12)

We seek the correlator of the current fluctuations

Cαβ(r, Ω; r′, Ω′) = δjα(r, Ω)δjβ(r′, Ω) (2.13)

for r ∈ Sp, r′ ∈ Sq with p, q 6= 0. With the help of equa-
tions (2.3, 2.11) it can be expressed as

see equation (2.14) above.

Following reference [9], we have neglected the term ∝ δnin

in equation (2.11) (smaller by a factor l/L) and the cross-
correlator L0L1 (smaller by a factor l/ξa).

We now integrate r and r′ over Sp and Sq to obtain
the correlator of the total currents through ports p and q,

Cpq(Ω,Ω′) =
∫
Sp

dSα
∫
Sq

dS′β Cαβ(r, Ω; r′, Ω′)

= C(1)
pq (Ω,Ω′) + C(2)

pq (Ω,Ω′). (2.15)

The first term C
(1)
pq contains the contribution from the

terms linear in the number density n̄ in equation (2.14).

Performing integration by parts and using equations (2.6–
2.8) we find that this term vanishes for p 6= q. For p = q
it contains the mean current,

C(1)
pq (Ω,Ω′) = δpq Īp(Ω +Ω′). (2.16)

For a time-independent mean current Īp one has a white-
noise spectrum C

(1)
pq (Ω,Ω′) = 2πδpqδ(Ω + Ω′)Īp. This is

the usual shot noise, corresponding to Poissonian statis-
tics of the current fluctuations. The second term C

(2)
pq de-

scribes the deviations from Poissonian statistics. It arises
from terms in equation (2.14) that are quadratic in n̄.
Performing again an integration by parts, one finds

C(2)
pq (Ω,Ω′) =

2D
ρ

∫
Sp

dSα
∫
Sq

dS′β

∫
V

dr′′
∫

dΩ′′

2π
∂n̄(r′′, Ω +Ω′′)

∂r′′γ

× ∂n̄(r′′, Ω′ −Ω′′)
∂r′′γ

∂G(r, r′′, Ω)
∂rα

∂G(r′, r′′, Ω′)
∂r′β

· (2.17)

Equation (2.17) together with equation (2.8) is the result
that we need for our analysis of the frequency dependence
of the noise spectrum.

2.3 Amplifying medium

The extension of our general formulas to an amplifying
medium (in the linear regime below the laser threshold)
is straightforward [9]: we assume that the frequency ω at
which we are detecting the radiation is close to the fre-
quency of an atomic transition with (on average) Nupper

and Nlower atoms in the upper and lower state. Then the
Bose-Einstein function can be replaced by the population
inversion factor f = Nupper(Nlower−Nupper)−1. This factor
is negative in the amplifying case (when Nupper > Nlower),
with f = −1 for a complete population inversion. (Equiv-
alently, one can evaluate f at a negative temperature [11],
with T → 0− for complete inversion.) An amplifying
medium has a negative absorption time τa = ξ2

a/D. We
can account for this by taking ξa imaginary. With these
two substitutions for f and ξa our formulas for an absorb-
ing medium carry over to the amplifying case.

3 Waveguide geometry

For the application of our general formulas we consider
a waveguide geometry (see Fig. 2). The waveguide has
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x = 0 x = L

Fig. 2. Thermal radiation (solid arrows) is incident on a
waveguide containing an absorbing or amplifying disordered
medium. The transmitted radiation (dashed arrows) is ab-
sorbed by a photodetector.

length L and cross-sectional area A, corresponding to
N = ω2A/4πc2 propagating modes (not counting polar-
izations) at frequency ω. We abbreviate s = L/ξa. We
consider a stationary incident current I0 = cAδωn̄in/4 =
(Nδω/2πρ)n̄in, and calculate the noise power spectrum of
the transmitted current,

P (Ω) =

∞∫
−∞

dt eiΩt δI(t)δI(0). (3.1)

In terms of the correlator of the previous section, one has
C11(Ω,Ω′) = 2πP (Ω)δ(Ω +Ω′).

3.1 Absorbing medium

We calculate the noise power from equations (2.8, 2.17),
using the Green function

G(x, x′, Ω) = −ξa

× sinh [(x</ξa)
√

1− iΩτa] sinh [(s− x>/ξa)
√

1− iΩτa]
sinh [s

√
1− iΩτa]

,

(3.2)

where x< and x> are the smallest and largest of x, x′, re-
spectively. The mean photon density is time independent.
In Fourier representation one has, from equation (2.8),

n̄(x,Ω) = 2πδ(Ω)
ρf

sinh s

×
(

sinh s− sinh (x/ξa)− sinh (s− x/ξa)
)

+ 2πδ(Ω)n̄in
sinh (s− x/ξa)

sinh s
· (3.3)

The mean current Ī = Īth+Ītrans is the sum of the thermal
radiation from the medium

Īth =
4Df
cξa

(Nδω/2π) tanh (s/2) (3.4)

and the transmitted incident current

Ītrans =
4DI0

cξa sinh s
· (3.5)

Substitution of equations (3.2, 3.3) into equation (2.17)
yields the super-Poissonian noise P − Ī as a sum of three

terms, P − Ī = Pth + Ptrans + Pex, with

Pth(Ω) =
8Df2

cξa
(Nδω/2π)

×
s∫

0

ds′
(

cosh (s− s′)− cosh s′

sinh s

)2

K(s′, s), (3.6)

Ptrans(Ω) =
8DI2

0

cξa
(2π/Nδω)

×
s∫

0

ds′
cosh2 (s− s′)

sinh2 s
K(s′, s), (3.7)

Pex(Ω) =
16DfI0
cξa

×
s∫

0

ds′
[cosh s′ − cosh (s− s′)] cosh (s− s′)

sinh2 s
K(s′, s).

(3.8)

We have defined

K(s′, s) =
∣∣∣∣ sinh(s′

√
1− iΩτa)

sinh(s
√

1− iΩτa)

∣∣∣∣2 . (3.9)

The two terms Ptrans and Pth describe separately the noise
power of the transmitted incident current and of the ther-
mal current from the medium. The term Pex is the excess
noise due to the beating of the incident radiation with the
thermal fluctuations from the medium.

The three contributions are plotted separately in
Figure 3. For L � ξa the frequency dependence simpli-
fies to

Pth(Ω) =
f Īth
1 + ζ

, (3.10)

Ptrans(Ω) =
cξaĪ

2
trans

16D
(2π/Nδω)

×
(

1− e−2s(ζ−1)

ζ − 1
+

3ζ + 2
ζ2 + ζ

)
, (3.11)

Pex(Ω) = f Ītrans
1 + 2ζ
ζ + ζ2

, (3.12)

where we have defined

ζ = Re
√

1− iΩτa =
[

1
2

(1 +Ω2τ2
a )1/2 +

1
2

]1/2

. (3.13)

As discussed in reference [9] (for the zero-frequency case)
the result for Ptrans requires that the incident radiation is
in a thermal state, at some temperature T0. (The quantity
f(ω, T0) = I0(2π/Nδω) is the corresponding value of the
Bose-Einstein function.) There is no such requirement for
Pth and Pex, which are independent of the incident state.
For T0 � T we may generally neglect Pth and Pex rela-
tive to Ptrans, so that P = Ītrans + Ptrans. However, if the
incident radiation is in a coherent state, then Ptrans ≡ 0
and since for sufficiently large I0 we may neglect Pth, we
have in this case P = Ītrans +Pex. The contribution Pth is
important mainly in the absence of external illumination,
when P = Īth + Pth.
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Fig. 3. Frequency dependence of the three super-Poissonian
contributions to the noise power, P− Ī = Pth +Ptrans +Pex, for
different values of s = L/ξa in an absorbing waveguide. The
solid curves are computed from equations (3.6–3.8), the dashed
curves are the large-s asymptotes (3.10–3.12). The parameter
Z is defined as Z = (cξa/2D)(2π/Nδω).

3.2 Amplifying medium

The results for an amplifying medium are obtained by the
substitution ξa → iξa, f → Nupper(Nlower −Nupper)−1, cf.
Section 2.3. The frequency dependence of Pth, Ptrans, and
Pex following from equations (3.6–3.8) is plotted in Fig-
ure 4 for lengths L below the laser threshold at L = πξa.

3.3 Cross-correlator

In the absence of any incident radiation, the noise P =
Īth + Pth is due entirely to the thermal fluctuations in
the medium. The current fluctuations at the two ends of
the waveguide are correlated, as measured by the cross-
correlator

P12(Ω) =

∞∫
−∞

dt eiΩtδI1(t)δI2(0). (3.14)

2
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s
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Fig. 4. Same as Figure 3, for the case of an amplifying waveg-
uide. The laser threshold occurs at s = π.

From equations (2.17, 3.2, 3.3) we obtain

P12(Ω)=
8Df2

cξa
(Nδω/2π)

s∫
0

ds′
(

cosh (s−s′)−cosh s′

sinh s

)2

× sinh[s′
√

1− iΩτa] sinh[(s− s′)
√

1 + iΩτa]
| sinh[s

√
1− iΩτa]|2

· (3.15)

The cross-correlator is plotted in Figure 5 for both the ab-
sorbing and amplifying cases. The outgoing currents at the
two ends of the waveguide are anti-correlated forΩτa � 1.

4 Comparison with quantum theory

A fully quantum mechanical theory for the photocount
distribution of a disordered medium was developed in
references [7,8]. In this section we verify that it agrees
with the semiclassical results of the previous section. We
consider the same system of Figure 2, a disordered waveg-
uide with a photodetector at one end and a stationary
current incident at the other end. We assume that the in-
cident current originates from a thermal source at temper-
ature T0. The photocount distribution is the distribution
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Fig. 5. Frequency dependence of the cross-correlator of the
outgoing current at the two ends of the waveguide, in the
absence of any external illumination. Computed from equa-
tion (3.15) for the absorbing case (lower panel) and amplifying
case (upper panel).

of the number of photons n(t) counted (with unit quan-
tum efficiency) in the time interval (0, t). Substitution of
I = dn/dt in the definition (3.1) of the noise power P (Ω)
leads to a relation with the variance Varn(t) of the pho-
tocount,

P (Ω) = −Ω2

∞∫
0

dtVarn(t) cosΩt, (4.1a)

Varn(t) = − 2
π

∞∫
0

dΩΩ−2P (Ω) (cosΩt− 1) . (4.1b)

The variance can be separated into two terms, Varn(t) =
n̄(t) + κ(t) = tĪ + κ(t), with κ(t) the second factorial
cumulant. The term tĪ, substituted into equation (4.1a),
gives the frequency-independent shot noise contribution Ī
to the power spectrum,

P (Ω) = Ī −Ω2

∞∫
0

dt κ(t) cosΩt. (4.2)

The cumulant κ = κtrans + κth + κex contains separate
contributions from the transmitted incident radiation and
thermal fluctuations in the medium, plus an excess con-
tribution from the beating of the two. These contribu-
tions have an exact representation in terms of the N ×N

reflection and transmission matrices r(ω), t(ω) of the
waveguide [7,8],

κtrans(t) =

∞∫
0

dω
2π

∞∫
0

dω′

2π
L(ω − ω′, t)

× f(ω, T0)f(ω′, T0)TrT (ω)T (ω′), (4.3)

κth(t) =

∞∫
0

dω
2π

∫ ∞
0

dω′

2π
L(ω − ω′, t)

× f(ω, T )f(ω′, T )TrQ(ω)Q(ω′), (4.4)

κex(t) =

∞∫
0

dω
2π

∞∫
0

dω′

2π
L(ω − ω′, t)

× 2f(ω, T0)f(ω′, T )TrT (ω)Q(ω′), (4.5)

where we have defined

L(ω, t) =

t∫
0

dt′
t∫

0

dt′′ exp[iω(t′ − t′′)]=2ω−2(1−cosωt),

(4.6)

Q(ω) = 11− r(ω)r†(ω)− t(ω)t†(ω), (4.7)

T (ω) = t(ω)t†(ω). (4.8)

Substitution into equation (4.2) gives the corresponding
contributions to the noise power P = Ī+Ptrans+Pth+Pex,

Ptrans(Ω) =
1
2

∞∫
0

dω
2π
f(ω, T0)f(ω +Ω,T0)

× TrT (ω)T (ω +Ω) + {Ω → −Ω}, (4.9)

Pth(Ω) =
1
2

∞∫
0

dω
2π
f(ω, T )f(ω+Ω,T )

× TrQ(ω)Q(ω +Ω) + {Ω → −Ω}, (4.10)

Pex(Ω) =
1
2

∞∫
0

dω
2π

2f(ω, T0)f(ω +Ω,T )

× TrT (ω)Q(ω +Ω) + {Ω → −Ω}. (4.11)

As in the previous section, we assume a frequency-resolved
measurement in an interval δω � ω, 1/τcoh with Ω � δω.
We may then omit the integral over ω and approximate
the argument ω±Ω in the functions f by ω. We take the
ensemble average 〈· · · 〉 of the noise power, in which case
the contributions from ±Ω are the same. Finally, we insert
the incident current I0 = f(ω, T0)Nδω/2π, to arrive at

Ptrans(Ω) = (2π/Nδω)I2
0 〈N−1TrT (ω)T (ω+Ω)〉, (4.12)

Pth(Ω) = (Nδω/2π)f2(ω, T )〈N−1TrQ(ω)Q(ω +Ω)〉,
(4.13)

Pex(Ω) = 2I0f(ω, T )〈N−1TrT (ω)Q(ω +Ω)〉. (4.14)



E.G. Mishchenko et al.: Frequency dependence of the photonic noise 295

It remains to evaluate the ensemble averages. This is done
in the Appendix, by extending the approach of refer-
ence [13] to correlators of reflection and transmission ma-
trices at different frequencies. The calculation applies to
the diffusive regime that the length L of the waveguide
is large compared to the mean free path l, but still small
compared to the localization length Nl. (The absorption
length ξa is also assumed to be � l.) The results are

〈N−1TrT (ω)T (ω+Ω)〉 =
8D
cξa

s∫
0

ds′K(s′, s)

× cosh2(s− s′)
sinh2 s

, (4.15)

〈N−1TrQ(ω)Q(ω +Ω)〉 =
8D
cξa

s∫
0

ds′K(s′, s)

× [cosh s′ − cosh(s− s′)]2

sinh2 s
, (4.16)

〈N−1TrT (ω)Q(ω +Ω)〉 =
8D
cξa

s∫
0

ds′K(s′, s)

× cosh(s− s′) cosh s′ − cosh2(s− s′)
sinh2 s

, (4.17)

where s = L/ξa and the kernel K(s′, s) is defined in equa-
tion (A.29). The combination of equations (4.12–4.17)
agrees precisely with the results (3.6–3.8) of the semiclas-
sical theory. The quantum theory is more general than the
semiclassical theory, because it can describe the effects of
wave localization. The method of reference [13] gives cor-
rections to the above results in a power series in L/Nl.
We will not pursue this investigation here.

5 Discussion

We have presented a theory for the frequency dependence
of the noise power spectrum P (Ω) in an absorbing or am-
plifying disordered waveguide. The frequency dependence
is governed by two time scales, the absorption or amplifi-
cation time τa and the diffusion time L2/D, both of which
are assumed to be much greater than the coherence time
τcoh. A simplified description is obtained, in the absorb-
ing case, for lengths L much greater than the absorption
length ξa =

√
Dτa, and, in the amplifying case, close to

the laser threshold at L = πξa. We will discuss these two
cases separately.

5.1 Absorbing medium

The general formulas (3.6–3.8) for P = Ī + Pth +Ptrans +
Pex simplify for L� ξa to equations (3.10–3.12). To char-
acterize the frequency dependence we define the charac-
teristic frequency Ωc as the frequency at which the super-
Poissonian noise has dropped by a factor of two:

P (Ωc)− Ī =
1
2
(
P (0)− Ī

)
. (5.1)
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Fig. 6. Ratio of Ī2
th and Pth in an amplifying waveguide as a

function of its length for different frequencies, computed from
equations (3.4, 3.6). The approximation (5.5) valid near thresh-
old for small frequencies is shown dashed.

In the absence of any external illumination (I0 = 0) we
have, from equation (3.10),

P = Īth

(
1 +

f

1 + ζ

)
, Īth =

4Df
cξa

(Nδω/2π), (5.2)

with ζ = Re
√

1− iΩτa, hence Ωc = 17/τa. If the illumi-
nation is in the coherent state from a laser, then we have,
from equation (3.12),

P = Ītrans

(
1 + f

1 + 2ζ
ζ + ζ2

)
, Ītrans =

8DI0
cξa

e−s, (5.3)

hereΩc = 9/τa. In both these cases the diffusion time does
not enter in the frequency dependence. This is different
for illumination by a thermal source at temperature T0

much greater than the temperature of the medium. From
equation (3.11), with f0 = f(ω, T0), we then have

Ptrans(Ω) = Ītrans

×
(

1+
f0

2
e−s
[

1−e−2s(ζ−1)

ζ − 1
+

3ζ+2
ζ2+ζ

])
. (5.4)

The characteristic frequency Ωc = (64D/L2τ3
a )1/4 now

contains both the diffusion time and the absorption time.

5.2 Amplifying medium

In the amplifying case the noise power becomes more and
more strongly peaked near zero frequency with increasing
amplification. Close to the laser threshold at s = π the
frequency dependence of Pth for small frequencies Ωτa �
1 has the form

Pth =
ZĪ2

th

2π[Ω2τ2
a + 4(1− s/π)2]

,

Īth =
4f

Z(π − s) · (5.5)

Here again Z = (cξa/2D)(2π/Nδω). Close to threshold
the peak in the noise power spectrum has a Lorentzian
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lineshape with half-width Ωc = (2/τa)(1−L/πξa). At the
laser threshold both Pth and Īth diverge, but the ratio
Ī2
th/Pth remains finite (see Fig. 6).

Finally, we note the fundamental difference between
the time scales appearing in the noise spectrum for pho-
tons, on the one hand, and electrons, on the other hand.
The absorption or amplification time τa obviously has no
electronic analogue. The diffusion time L2/D appears in
both contexts, however, the electronic noise spectrum re-
mains frequency independent for Ω > D/L2 [14]. The rea-
son for the difference is screening of electronic charge. As a
result the characteristic frequency scale for electronic cur-
rent fluctuations is the inverse scattering time D/l2, which
is much greater than the inverse diffusion time D/L2.
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useful discussions. This research was supported by the “Neder-
landse organisatie voor Wetenschappelijk Onderzoek” (NWO)
and by the “Stichting voor Fundamenteel Onderzoek der Ma-
terie” (FOM). E.G.M. also thanks the Russian Foundation for
Basic Research.

Appendix A: Correlators of reflection
and transmission matrices

To compute the noise power spectrum in the quantum
mechanical approach of Section 5, we need the correlators
of reflection and transmission matrices t(ω±) and r(ω±) at
two different frequencies ω± = ω ±Ω/2. (For Ω � ω this
is the same as the correlator at frequencies ω and ω+Ω.)
We calculate these correlators for a waveguide geometry
in the diffusive regime, by extending the equal-frequency
(Ω = 0) theory of Brouwer [13].

Upon attachment of a short segment of length δL to
one end of the waveguide of length L, the transmission
and reflection matrices change according to

t→ tδL(1 + rrδL)t, (A.1a)

r → r′δL + tδL(1 + rrδL)rtTδL, (A.1b)

where the superscript T indicates the transpose of a ma-
trix. (Because of reciprocity the transmission matrix from
left to right equals the transpose of the transmission ma-
trix from right to left.) The transmission matrix tδL of
the short segment at frequency ω± may be chosen propor-
tional to the unit matrix,

tδL =
(

1− δL

2l′
− δL

2c′τa
± iΩδL

2c′

)
11. (A.2)

The mean free path l′ = 4l/3 and the velocity c′ = c/2
represent a weighted average over the N transverse modes
in the waveguide.

Unitarity of the scattering matrix dictates that the re-
flection matrix from the left of the short segment is related
to the reflection matrix from the right by r′δL = −r†δL. We

abbreviate rδL ≡ δr. The matrix δr is symmetric (because
of reciprocity), with zero mean and variance

〈δrklδr∗mn〉 = (N + 1)−1(δkmδln + δknδlm)δL/l′. (A.3)

The resulting change in the matrix products tt† and rr† is

tt† → (1− δL/l′ − δL/c′τa)tt† + (rδrt)(rδrt)†

+ rδrtt† + (rδrtt†)†, (A.4a)

rr† → (1−2δL/l′−2δL/c′τa)rr†+(rδrr)(rδrr)†+δr†δr

+ rδrrr† + (rδrrr†)† − rδr − (rδr)†. (A.4b)

The frequency Ω does not appear explicitly in these in-
crements.

We define the following ensemble averages

R = 〈N−1Tr (11− rr†)〉, (A.5)

C = 〈N−1Tr (11− r−r†+)〉, (A.6)

T = 〈N−1Tr tt†〉, (A.7)

where r, t are evaluated at frequency ω and r±, t± at fre-
quency ω ±Ω/2. Similarly, we define the correlators

Crr = 〈N−1Tr (11− r−r†−)(11− r+r†+)〉, (A.8)

Crt = 〈N−1Tr (11− r−r
†
−)t+t

†
+〉, (A.9)

Ctt = 〈N−1Tr t−t
†
−t+t

†
+〉. (A.10)

We will see that, in the diffusive regime, these 6 quantities
satisfy a coupled set of ordinary differential equations in L.

The diffusive regime corresponds to the large-N limit,
in which the length L of the waveguide is much less than
the localization length Nl. In this limit we may replace
equation (A.3) by 〈δrklδr∗mn〉 = (δL/Nl′)δkmδln. In the
large-N limit we may also replace averages of products
of traces by products of averages of traces. From equa-
tion (A.4) we thus obtain the differential equations

l′
dR
dL

= 2γ(1−R) −R2, (A.11)

l′
dC
dL

= 2γ(1 + iΩτa)(1− C)− C2, (A.12)

l′
dT
dL

= −γT −RT , (A.13)

l′
dCrr
dL

= −(4γ + C + C∗ + 2R)Crr + 2R(R+ 2γ),

(A.14)

l′
dCrt
dL

= −(3γ + C + C∗ +R)Crt − T Crr + 2(R+ γ)T ,
(A.15)

l′
dCtt
dL

= −(2γ + C + C∗)Ctt − 2T Crt + 2T 2, (A.16)

with the definition γ = l′/c′τa. The initial conditions are
that each of these 6 quantities → 1 for L→ 0.

This set of differential equations may be simplified fur-
ther if we assume, as we did in the semiclassical theory,
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that the mean free path is small compared to both the
absorption length and the length of the waveguide. All
6 quantities (A.5–A.10) are of order

√
γ, which is � 1 if

l′ � c′τa, so that we obtain in leading order

l′
dR
dL

= 2γ −R2, (A.17)

l′
dC
dL

= 2γ(1 + iΩτa)− C2, (A.18)

l′
dT
dL

= −RT , (A.19)

l′
dCrr
dL

= −(C + C∗ + 2R)Crr + 2R2, (A.20)

l′
dCrt
dL

= −(C + C∗ +R)Crt − T Crr + 2RT , (A.21)

l′
dCtt
dL

= −(C + C∗)Ctt − 2T Crt + 2T 2. (A.22)

As initial condition we should now take that the product
of each quantity with L remains finite when L→ 0.

Although the differential equations are coupled, they
may be solved separately forR, C, T , Crr, Crt, Ctt, in that
order. In terms of the rescaled length s = (2γ)1/2L/l′ =
L/ξa, the results are

R =
(2γ)1/2

tanh s
, (A.23)

C =
(2γ)1/2

√
1 + iΩτa

tanh s
√

1 + iΩτa
, (A.24)

T =
(2γ)1/2

sinh s
, (A.25)

Crr =
(8γ)1/2

sinh2 s

s∫
0

ds′K(s′, s) cosh2 s′, (A.26)

Crt =
(8γ)1/2

sinh2 s

s∫
0

ds′K(s′, s) cosh(s− s′) cosh s′, (A.27)

Ctt =
(8γ)1/2

sinh2 s

s∫
0

ds′K(s′, s) cosh2(s− s′), (A.28)

where the kernel K is defined by

K(s′, s) =
∣∣∣sinh s′

√
1 + iΩτa

∣∣∣2 ∣∣∣sinh s
√

1 + iΩτa
∣∣∣−2

.

(A.29)

These are the expressions used in Section 4 (where we have
also substituted

√
2γ = 4D/cξa). The remaining integrals

over s′ may be done analytically, but the resulting expres-
sions are rather lengthy so we do not record them here.
For Ω = 0 our results reduce to those of Brouwer [13] (up
to a misprint in Eq. (13c) of that paper, where the plus
and minus signs in the expression between brackets should
be interchanged).
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